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) THE FLOATING BODY PROBLEM
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g~ T. S. Angell, G. C. Hsiao, R. E. Kleinman
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7 The time harmonic three dimensional finite depth
floating body problem is reformulated as a boundary
integral equation. Using the elementary fundamental

solution that satisfies the boundary condition on the

Tl '.":-1'. s,

5 sea bottom but not the linearized free surface condition,

the integral equation extends over both the ship hull
and the free surface. It is shown that this integral
equation is free of irregular frequencies, that is, it

has at most one solution. <§§i""ﬂ #

1. Introduction

» In his classic work on the floating body problem, F.

could be reduced to an integral equation over the wetted

E John (1950), showed how the boundary value problem
E portion of the ship hull. The kernel of his integral

operator was the Green's function for the entire £fluid
domain with no ship present that satisfied the boundary
condition at the bottom of fluid (assumed flat) and the

linearized free surface condition on the entire fluid-air
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boundary. John demonstrated the existence of irregular
frequencies, frequencies for which the integral equation
was not uniquely solvable. Recently Kleinman (1982)
provided two methods of modifying the integral equation
so that there were no irregular frequencies. 1In one
case the domain of the integral operator was enlarged and
in the other the operator itself changed, but both methods
employed John's Green's function which is rather complicated,
especially in the three dimensional, finite depth case.
Another way to treat this problem is to employ a much
simpler Green's function, one that satisfies only the
boundary condition at the bottom of the fluid. Since this
dées not satisfy the free surface condition, we get an A
integral equation over both the wetted surface of the ship
hull and the free surface. Such an integral equation has
been derived and even solved numerically for certain cases,
e.g. Yeung (1978) and Bai and Yeung (1974). Numerical
evidence indicated that this integral equation did not
exhibit irregular frequencies but no conclusive analytical
argument has yet appeared to support this conjecture.

The present paper provides a proof of the conjecture

that this integral equation has no irregular frequencies.




By irregular frequencies is meant frequencies for which
the integral equation is not uniquely solvable even

though the solution of the corresponding boundary value
problem is unique. What we prove is that the integral
equation obtained using a simple combination of elementary
sources ié uniquely solvable at all frequencies.

It should be emphasized that our concern here is
not with uniqueness for the boundary value problem itself.
There John required certain geometric restrictions in
order to establish uniqueness. These may be somewhat
relaxed to include hull forms with corners and non normal
intersections with the free surface (see Kleinman, 1982).
However, in the three dimensional case treated here, we
retain the restription that vertical rays from the free
surface may not intersect the ship hull in order that the
boundary value problem be uniquely solvable. Our concern
here is with integral equation formulations and the irregular
frequencies which are introduced in some cases.

It should be noted that the occurrence of irregular
frequencies in integral equation formulations of acoustic
scattering problems is entirely analogous to the present
case., (See e.g. Smirnov, 1964; Brundrit, 1965; Copley, 1968;
Schenck, 1968 and Chertok, 1970, 1971) However, methods
for removing the irregular frequencies in acoustic scattering
all essentially involve making the kernel of the integral
equation more complicated (e.g. Brakhage and Werner, 1965,

Burton and Miller, 1971, Kleinman and Roach, 1974, 1982).
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In the present case the irregular frequencies are removed
by making the kernellsimpler but extending the range of
integration.

2. Notation and Statement of Problem

Specifically, we treat the three dimensional floating
body problem with finite depth, h. If we denote the fluid
domain by D,, the hull by C,s the free surface by Ce and
the bottom by Cg, and if we denote by D_ the domain consisting
of the upper half space and the interior of the ship hull,
then geometry may be illustrated as in Figure 1.

T :

x

- - -

C
z -f
C
n 0 D+
e
Figure 1
The function ¢ solves the floating body problem if

g =0inbD,, $2=vonc,, R =0onc,, (1)

.%% + k¢ = 0onC,,

and provided ¢ satisfies a radiation condition. Here %H

is the normal derivative directed into D, and Vv is a given

function. The radiation condition is specified in the form

%% - ik_¢ = o (0"12) as p + = (2)
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uniformly in 6 and y. This condition may be shown to

guarantee that

elkoP

¢(p) = (£(s) + 04" 1)) as p » =, (3)

P
(p,8) being polar coordinates in the free sﬁfface-wate;
plane and ko is the positive real of the transcendental
equation

k = ko tanh koh . (4)

Now define the Green's function

1 1
Z7Tp-q] ~ ZFTp-a;]

Y(qu) = - (5)

where p = (xp, Ypr zp), g= (xq, yq, zq) and q, = (xq, -2h-yq, zq),
and we have oriented a rectangular coordinate system so that
the plane y = 0 is the water plane and free surface while
y = =h is the bottom.
With the Green's function defined in (5), which
has a double strength singularity on Cﬁ, Green's theorem

for solutions of Laplace's equation in D, which satisfies

the radiation condition (2) takes the form

(rlp, @) 5p= -4(a) 3= )ds = a(p) 4(p) (6)
q q

CoucfucB
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a(p) = 2 for p € D, v CB
= ] for p on smooth points of C° v Cg (7)
= (0 for p ¢ D_.

If ¢ satisfies all of the boundary conditions in (1) we obtain the

boundary integral equation

4p) + 1 o(@ F- (pads; + L 0@ [ F (B, +ky(P,a) ] ds
S q Ce q
= f y(p,9)Vig)ds (8)
Cq q

where p lies either on C° or Cf. The integral on cB vanishes

since both vy and ¢ satisfy a homogeneous Neumann condition

and the integral over a large cylinder vanishes since y =

O(D_l) and ¢ = 0(0-1/2), the radiation condition ensuring

that ¢ has asymptotic growth given by (3). As explained in the
introduction, this equation has irregular freguencies if there are
certain values of k for which the homogeneous equation (V=0)

has nontrivial solutions. We prove here that such irregular

frequencies do not exist.

3. Uniqueness

Specifically our central result can be stated as follows:
ik_o -
Theorem: I_f(a)¢--°—F°—[f(e)+0(o 1 as o += ,
o

)
and (b) ¢(p) "é ¢ (qQ) ,—,Y‘-;d-q +cf:

9
¢(q) bgi— + kyldsg = 0
o b4 q

for all p e co and Cf ’

(c) ¢ is continuous on c° v Cf

then ¢ (p) ‘0.
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Proof: The proof of this theorem depends on the growth of
potentials with densities satisfying conditions (a), (b),
and (c) of the theorem. Assume that ¢ is a function
satisfying (a), (b) and (c) of the theorem and define the

functions u, and u_ in D_ and D_ respectively as

u

+ peD
YimS 3Y 3y +

¢ (q) T (p,q)ds_+/ ¢(q) & (p,a)+ky(p,q)lds_,{ . (9)
wo G ng P % Ce T ong @ pep_

As will be seen shortly, an essential ingredient involves the
growth of u_ for large radial distances from the origin. Observe
that since vy has no singularities when qeC, v C. , peD_ and vy
is a solution of Laplace's equation it follows that

Vzu_ = 0 , peD_. ' (10)
The jump conditions for the double layer defined on Co u Ce
take the form

lim '
3Y - aY
p*C_uC J ¢(q) (p,g)ds_ = + ¢(p)+ f ¢(q)
o f 3nq q 5nq (p,q)ds

peDt Coucf A coucf

ql
peCoqu . (11)

This, together with the continuity of the single laver, implies

that

lim - 3y

PrCouCe u_(p)=¢ (p)+cf¢(q)w (p.q)dsq+cf¢(q) [5n- +kvlds, . (12)
peD_ o q 4 q
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But ¢ satisfies the homogeneous equation (b) hence
lim u(p) =0 . (13)
p*Coqu
peD_

However, as established in the appendix, lim u_ = 0. Hence
b au

the maximum principle, which asserts that u_ assumes its

maximum and minimum values on the boundary, implies that

u_ 20, peD_. (14)
Therefore

_ _ 9 on C_ and Ce s (15)

— o

where %E- indicates the normal derivative from D_ . Using

the defining equation (9) for u_ we find with the usual jump
conditions for the single layer

9 ' .
3o . 0@ F(p,@)ds +k So(@) o= Y(p,a) s+ B(RIO(p; = O (16)
o) Coucf q Cf P

where

B(p) =0 , p ¢ Co

= -k, p € Cf .

Note that while existence of the normal derivative of the
double layer in some weak sense was needed in order to apply
the divergence theorem, once it is established that u_ =0
and hence has an ordinary normal derivative, namely zero, the
defining equation for u_ ensures that the normal derivative
of the double layer exists in the ordinary sense since u_

and the single layer have ordinary normal derivatives.
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Now examine the limiting values of u_asp approaches

COUCf from D,. Using the usual jump conditions we find

9y Y
u, (p)= -¢(p)+cf¢(Q)EE; (P,q)dsq+cf¢(q)[33; +kY]dsq » PeCuCe  (17)
b

o
and, since ¢ satisfies the integral equation (b),
u, (p) = -2¢(p) , peC uC¢ . (18)
Observe that since ¢ is assumed to have growth as specified in

(a}, equation :18) ensures that u_(p) has the same growth on

Cf.

Now form the normal derivative of u, from D obtaining
su

e " . 1 s@F (padsrk So(f-(p,)ds -B(RIO(R) . (19)
P Coucf q cf o)

Since the normal derivatives of the double layer with continuous
density are the same from either side provided one of them exists,
we use equations (16) and (18) to obtain

du

355 = -28(p)¢(p) = B(P)u, - (20)

With the definition of B8(p) (cf. egqn. (16)) we see that
au+
sa- = 0 + PeCy: (21)
+ .

and

3u+

-E: = —ku+ ’ peCf .

(22)
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Also,

au+

'rn— = 0 ’ pECB (23)
+

since this property is inherited from y(p,q). Furthermore

by its construction u, satisfies Laplace's equation in D_

+

and since u, also satisfies the Neumann condition on CB and

the free surface condition on cf, u, has the representation,

following John (1950),

./xz + z2 > a, (24)

u, = nzo u (p:0)cosh k, (y+h) , o

where kn are the roots of the transcendental equation (4)
and a is any number greater than the diameter of the ship

hull i.e.

a > max p .
peCo

Recall that (p,y) are the cylindrical coordinates of the point

p. Moreover, as shown in the Appendix, u, =0 (—;%:3)

Y hence
] 0 1
3 I 4, (P /1) cosh k, (y+h)dy = 0 (=) (25)
- -h
3 which implies, with the orthogonality of {cosh k_(y+h)}
L on Lz(-h,O) , that
g 1
un(p,e) =0 (_!1_-6)_ (26)

P

TR
LA . U.I‘-.I.'I
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This in turn implies that
27 -.ime 1l
I un(pﬁ) e de =0 (:!;-—6) | (27)
1]
and since the most general form of un(p,e) is
0
(1) (2) ime
un(p,s) = mim [anmn |m| (knp)"'bnmnlml (knp)] e (28)

it! follows that

m|

| %m B fi)l (kpe) b, B fz) (kpP) =0 (‘—;;,%g) (29)
Here H(l)é(z) are Hankel functions of the first and second kind
respectively. The fact that kn is positivg imaginarv for

n>0 then ensures that

b =0, n0 .

nm
Then
- -] b -
ua, (p,8,0) = I z a H (1) k eimecosh k h
4 P20y ne0 mece R [m| (np) n
- -
(2) im 3
+ I bom Hlml (kop) e cosh koh (30)

T===c0

and because u_(p, 9,0) has the same asymptotic growth as

H(]]!;) (ke) » cfeqn. (18), uniformly in 9 we may conclude

that bom = 0 which then implies that

u (e, 3,y) = £ 1 a_n (¥

- im ) .
o0 me onm B |p|(kpe} e7 Tcosh kp (y+h) (31)

hence u_ satisfies the radiation condition for -h<y<0 .

................
...........................................................

.................
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Thus u  is a solution of the homogeneous floating body
problem in D_ (cf. (1) and (2)) and therefore, provided that
Co satisfies the geometric restrictions of the uniqueness
proof (John (1950), Kleinman (1982)), it follows that u =0
in D, and hence also on coucf. Equation (30) then ensures
that ¢(p) = 0 on C ,uCc. That is, the only solution of the
integral equation (b) satisfying (a) and (c) is ¢ = 0. This
means that the integral equation (7) has no irregular frequencies
and has at most one solution. Existence of this solution for
all k will be discussed elsewhere.

We remark that if the integral equation (7) has a solution
$ on _Coucf then the solution of the inhomogeneous floating body

problem (1) is given by

Y 3y_ -1 3y
oB) = -3 4@ T (pdsg - L 4@ -+ kv(p,a) a8y (3D)
o a £ 7
+1/7 vi@Qvy(p,q)dsq
2.C,

for peD+ v CB.
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Appendix: On the growth of u+.

Here we prove the Lemma needed in establishing
uniqueness of solutions of the integral equation. For
convenience we restate it as follows:

ikop
Lemma: If a) ¢ = &— (£ (8) + O(p~
o

) as p » =,

Y 3y
b) ¢(P) + /s ¢(q) =X-as_+ / ¢(q)[=X~ + kylds_ =0 ,
C anq 9 ¢ anq q
0 £
pecoucf,
¢c) ¢ is continuous on coucf ¢

and d) ut =/ ¢(@ SL-ds_+ s ¢(@) [3L-+ kylds_ , p « Dt
A n.q q Cf n q

then u_ = 0(——17%:3) , as rp + o , § < 1/2
r

. P
- and
- U, = O(—yow—r) a8 p_ + ®
+ :'I77=T P
X P
z where r, = lpl = /pp!+y 2 .
- P
Proof With y as defined in eguation (5) it is clear that
9y = 1
é ¢ (D)3 dsq 0 (;fi) (A.1)
o q P
: and
cf;a 0 (@) (2 + kylas_ = 0(1) (A.2)
£'%a 019 3nq Y q Iy ’ :

..
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where Cana is that portion of the free surface contained

in the ball of radius a. It is a bit more work to establish

the growth of

d
/ ¢(q)[31— + kylds
Can: nq q

where B: is the complement of the ball. Considering first

the term involving the normal derivative, which on Cg is

3 __ @
9
g Wq

) Y. =0,
we find that 9

ar =
3y 1 yp yJ)+2h
¢(q) =—=— ds = ¢ (q) - p do de (A.3)
J c Mg e I R(0)°  R(h)
Cana 0 a

where (p,8) are the cvlindrical coordinates of q on Ce and

- o1 2 2 2
R(h) /kxp xg) +fzp zg) Sy r2m 2 .

Introduce two sets of spherical coordinates of the form

= S = r' '

zp rp sin o cos ep zp r' sin a' cos ep
' si [ - ' [} ' k3 .

xp rp n a sin ep and xp r' 8in a' sin o
= r + = ' '

yp P COSs a yp 2h r' cos a

where °:°pi?“o O<a<®, O<a'<nr/3, r yx'30 .

P

Clearly (rp,ep,a) are the usual spherical coordinates while

r' and o' will depend on h. Explicitly

' = Jx_%+z 2+(yp+2h)i = Jr 2+2hyp+4h2

P P P

r
hence -$ < 1 for 2h2+hyp:0 » & condition always satisfied
r
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for pe D+uD_. Note that ypg—h when pe D, uD_ hence

o
"

a' <n/2 whereas a varies over a larger interval, in fact

a>v/2 when PeD_. 1In this notation

R(h) = /¢ 24p2-2¢ p sin o cos(8-5.) (A.4)
and _ | 2y w
2 1 EQ COos a
¢(q) 2L- ds_ = ¢.(q) ——
anq q 2 (rp +p -2rp(sin a cos (a-ep)§>2
Can 0 a
r' cos a'
I odpdA
r'%+02-2r' 0 gin o' cos (6-8_) 3/2

(A.S)

It suffices to consider the first integral on the right, the

analysis for the second being identical with r', a', y' replacing

rp, a, Y. For brevity we omit the subscript and denote rp by r

in the ensuing analysis and consider

21 =
r cos a 55 ¢(q) p dp do 372 for 0 <a <7 . (A.6)
(r“+p“=2rp sin o cos (e-qp))
a
Using the asymptotic form of ¢ and the substitution p=rt we find
21 =
¢(a)p do A8
r cos a ——5—
(r"+p“=2rp s8in a cos(e-ep))325
a
2n o ik.rt
. cosa e 0 (£(6)+0 (1)) tatde 73
r1 2 /T (1+t2-2t sin a cos (e-ep))
0 a
r

hence the integral is O(lT73) for o # % . Note that this expression
r

does not obviously exist when a - % . To see what happens as a -+ %

observe that




-] 8=

o+
Yp*

- lim ¢ 20 $(@ 3=y (p,a)ds

14

2% o
: 6(q)p do de
N lim r cos a
i asw/2+ [ [ (x +p%-2rp sin a cos(e-ep))i2
0 a
2r =
) d 1l 4
= lim - J J ¢ (q) v ) ) 3173 pde
- - - =0
\ )2 Q- ((xp=%) S+ (Y =y ) “+(2,=2) %) Yq
(o

an q
c q
pcDg £YBa
= 12"¢ (P): Dp>a
where vy 1
o~ "~ . 12 _ 2, .. .. 12,1/2
2n((xp xq) +(yp yq) +(zp zq) )

and the jump-condition for a double layer is used. Here we ‘aake
no use of the assumption that ¢ is a solution of the integral
equation b). The integral in the jump condition vanishes for P
on Cf, (yp-Q). Now we use a) which asserts that on Cf, ¢ is

assumed to gvow as 0(-%75), which is the desired growth. Hence
the integral (A.6) is 0(l1/2) for 0 < a < 7 . Redoing the analysis
r

with r', a', y' replacing rp, a, yp leads to a similar result.

Hence we conclude that

1 - - A7) |
¢(q) %%— (p,q)dsq = 0(;177) as r > =, Y, > h. ( )
Cfnsg q

Next we consider

1 1
O(Q)Y(P:Q)dsq = - %? ¢ (q) [RTUT + RTHT] pdode . (A.8)

O N
P38

c

Cana
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Using the notation previously introduced and the asymptotic form of
¢ we must treat integrals of the form

2r = ik.p

I = J J e [f(9)+0(b]=)]pdpde (A.9)
d a " (+%4p2-220 sin ccos(e-ep))172

and a similar integral with r', o' replacing r, a.

The term involving 0(%) is easily handled since

21 o ik.p
0
e 0(%)odode

(A.10)
o (f2+§2;2rp sin a cos (6-6p)‘)172 J

O\
o

=
8

2
- <c dods
- /F(r2+p2-2rp sin o cos 8) /%
X 0 a
‘i - 2r o
: J J
. c dtde
»_. -<-
- /2 ! VE (1+t2-2t cos 0)/2

0

. A 1 :
where ¢ is independent of r and a. This is seen to be 0( ) since
. r172

the integral on the right exists and is independent of r.

The remaining integral is of the form

2n ® ikoo
1. = e o_f(6)dods
1 (r2+p:-2ro sin a cos(e-ep))l/f (A.11)
0 a
2n ikoa
J £(6)/T e  do
- i%; ) (r§+a!-2ar sin a cos(e-ep))i7§
2w‘ )
ik.o
1 o® 4 Yo
- e T dDde
IE; ’ [ & [(r +92-2rp sin acos(e-ep))I/’
0 a

............... L et et T AT a L T T LT A e T
» . PR UL S S S L TR S S S SRR St T e .-'- o -~ -t --. .u._- ‘. FUER AN ) - r Y .. -... "..‘ - SN )
R T TSN AR e S e N R Nt T A N e VL R A R v IR vy

..........
° .'.
-

o
AININ




T

=20~

The first term on the right is clearly 0(%) hence, on performing

the indicated differentiation, we have

27 =
ik,p
1l,- 1l o",.- 2 2
I, = 0(3) - e (r°=p“)£(06)dodse
1 r 21k, J J -3 —373
0 0 a Yo (r+p“-2rp sin a cos(e-ep))3 2
and letting p = rt 21 = ikort 2
1 1 e (1-t") £(8) dtde.
L = O(F) - 1/2 t1/2(1+t2-2t sin a cos(8~8 ))3/2
Zikor o
0 a
r

We break up the t'integration into three parts and use the estimates

2n  1/2 ikort 2 1/2
e (1-t") £(e)dtde 2
t (1+t!-2t sin a cos(6-6 )f37i < cllttl, ot )de
® /E(t=-1)
0 a/r 0
=c,llgll, .
and
2w - 1/2
‘ I ik,rt 2
/_e (I-t ).f(e)dtde 73 < chH, (tz_l)dt
0 2 t (1+t2-2t sin a cos(e-ep)) 2 /T(t=1)3
= c,llgll,
where ||-|[_ is the sup norm and the constants ¢, and c, are

2
independent of a, ep, r and £, to obtain

2y 2 ikort 2
I, = °“%77’ - 1 e (1-t<) £(9)dtde
r 24k r1/ 2 I J t172(14¢%2¢sin o cos (8=5)) /%
0 1/2
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E
g which we write as
. 2T 1 ikort 2
’ 1 rI:2 2ik r:I;z EI/2(1+t2-2t sin a cos (6-0_)) /
0 0 172 P
!
f 2 ik, ru ' .
: + [ e ¢ (-uau 46
1 ul/z(l+u2-2u sin a cos (e-ep))3/2

Letting u = % in the second integral we get

iv T
2m 1 . ikort lkOE 2
I. = 0(—2r) - 1 £(8) J (e -e ) (1-t7)dt
1 r172 Zikorl/2 172 t1/2(1+t2-2t sin a cos (6=-¢ ))3/2
P
(A.12)
The integral in (A.l12) which we denote as I2 satisfies the
inequality
A 4
27 1l 1k0rt 1ko€ 2
I, = J £(0) I (e -e ) (1-t)at
1/2 2_ . _ 3/2
9 172 t (1+t"=-2t sin a cos (8 ep))
1=-8
2r 1 ikgrt ikE(® | ikgrt ik T
e -e e -2 2
< |11, [ J 773 373 (1-t°) dtas
0 172 t (1+t°-2t sin a cos 8)
{A.13)

for arbitrary § ¢ (0,1) (we further restrict § subsequently) and

using the estimates
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't
ik.r
e - 4 =
ik.r
KTt OF| <4k r0-w L Foec,

we obtain

™ 1

2
. 1+6
I, < ctlfll, r’ (é't) dede 177 (A.14)
(1+t“~-2t sin a cos 6))
0 1/2

where c is independent of r, «, ep and f£.

But for 0 < a < 7 and 0 < 6 < 2r we may show that

2 : = 2 2 < 2 2
14t€~2t $in a cos 6 ~ 1+t“=2t cos 8 ~ (l-t)
hence

2n 1

s —dede s

I, 2 cllf]l r (1+t%-2t cos 8)1°2
A 0 172

The kernel is weakly singular at t=1, 6=0 hence the integral
exists. Thus there is a constant, c2, such that

)
I, = czllfllcr

which with (A.12) establishes that

1, = o(ef - 12 | | (A.15)

1
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We may choose § ¢ (0, %) to ensure that I, decays with r.

1l
A similar growth estimate is obtained if r', &' replace r, a

hence, with (A.8) we see that

+(@)v(p,q)ds_ = 0(ef - 172 (A.16)

nBc

cf a

This result taken together with (A.7) ensures that

o(@) [ + kylas, = o(z® = /3 (A.17)
q
(]
CenB

which with (A.l) and (A.2) establishes that

§ - 1/2

ut = 0(r, ) (A.18)

which implies, for =-h < u < 0, that

u, = 0(ppG-l/Z)
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